Ricci flow from spaces with isolated conical singularities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci flow on surfaces with conical singularities Hao Yin

This paper studies the normalized Ricci flow on surfaces with conical singularities. It’s proved that the normalized Ricci flow has a solution for a short time for initial metrics with conical singularities. Moreover, the solution makes good geometric sense. For some simple surfaces of this kind, for example, the tear drop and the football, it’s shown that they admit Ricci soliton metric. MSC 2...

متن کامل

Harmonic maps on spaces with conical singularities

© Bulletin de la S. M. F., 1992, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Double Spaces with Isolated Singularities

We prove the non-rationality of a double cover of P branched over a hypersurface F ⊂ P of degree 2n having isolated singularities such that n ≥ 4 and every singular points of the hypersurface F is ordinary, i.e. the projectivization of its tangent cone is smooth, whose multiplicity does not exceed 2(n− 2).

متن کامل

L-cohomology of Spaces with Non-isolated Conical Singularities and Non-multiplicativity of the Signature

We study from a mostly topological standpoint, the L-signature of certain spaces with non-isolated conical singularities. The contribution from the singularities is identified with a topological invariant of the link fibration of the singularities. This invariant measures the failure of the signature to behave multiplicatively for fibrations for which the boundary of the fibre in nonempty. The ...

متن کامل

On Type-I singularities in Ricci flow

We define several notions of singular set for Type-I Ricci flows and show that they all coincide. In order to do this, we prove that blow-ups around singular points converge to nontrivial gradient shrinking solitons, thus extending work of Naber [15]. As a by-product we conclude that the volume of a finite-volume singular set vanishes at the singular time. We also define a notion of density for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2018

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2018.22.3925